Demonstration of Zinc Injection Technique in Fugen Nuclear Power Station

Satoshi MORITA

Radiation and Chemistry Management Section Fugen Nuclear Power Station Japan Atomic Energy Agency

Contents

Outline of Fugen nuclear power station

•Water chemistry history in Fugen

Demonstration of Zinc injection technique

Fugen Nuclear Power Station

- Heavy-water-moderated, boiling light water cooled, pressure tube type reactor
- 165 MWe [Prototype Advanced Thermal Reactor(ATR)]
- Pu-U mixed oxide fuel
- Commercial operation since 1979
- Average load factor: ~ 65%
- Permanent shut down: 2003

Outline of FUGEN

An Overview of Primary Cooling System

Radiation Dose Rate Rise Mechanism of Reactor Cooling System

Nuclide	Half-life	Reaction
⁶⁰ Co	5.3 year	⁵⁹ Co(n,)
⁵⁸ Co	72 day	⁵⁸ Ni (n,p)
⁵⁹ Fe	45 day	⁵⁸ Fe(n,)
⁵⁴Mn	310 day	⁵⁴Fe(n,p)
⁵¹ Cr	28 day	⁵⁰ Cr(n,)

Dose Rate Reduction by Chemical Decontamination and Zinc Injection

Water Chemistry Features of Fugen

- Material integrity
 - HWC (1984.7 ~ 1985.7: experimental HWC) (1985.12 ~ 2003.3 : HWC)
- Occupational dose reduction
 - Chemical decontamination
 - (1989, 1991, 1999, 2000)
 - Zinc injection

(1998.8 ~ 1999.1 : experimental Zn Inj.) (1999.8 ~ 2003.3 :continuous Zn Inj.)

Application Timing of Decontamination with Water Chemistry History in Fugen

Area of Decontamination

Doserate Change of the Reactor Coolant Recirculation Pump Outlet Pipe

Preparations for Zn Injection in Fugen

Flow Schematic of Zinc Injection in Fugen

Activity Change During Zinc Injection

Fugen Nuclear Power Station, JAEA-14

Long Term Trend of Co-60 Concentration in Reactor Water on HWC and Zinc Injection

Fugen Nuclear Power Station, JAEA-15

Ge Detector/shield Set Against RCP-D Outlet

After Decontamination Co-60 Deposition Coefficient

Long-term Occupational Dose Related Issues

Averaged doserate in the 1st periodic maintenance perriod *Fugen Nuclear Power Station, JAEA*-18

CONCLUSION

- The zinc injection after the decontamination effectively suppressed the re-adhesion of Co-60 on the surface of piping and maintained the radiation source state at a low-level.
- The occupational exposure dose in 17th inspection period was at the minimum, 1.31 person 'Sv, through Fugen's operational period.
- The dose control measures for a permanent, effective plant were achieved by these water chemistry control technique developments and in this way, effective exposure dose control measures were established.