2014 ISOE Asian ALARA Symposium

Decreasing costs and increasing efficiency by reusing Lead vests for reduction of waste materials

2014.9

2014 ISOE Asian ALARA Symposium

Table of contents

- I. Purpose & Background
- ■. Reusing of Lead vests
- **III.** Manufacture of shielding
- IV. Application of Shielding Materials
- V. Expected effect and Plans

I. Purpose & Background

Reduction of the waste materials by reusing the disused Lead vest

Disposal of the disused radiation protection supplies in the RCA

Reduction of costs & waste by reusing the obsolete materials Contribution to decreasing the low base dose emissions through the tailored Lead vest

I. Purpose & Background

The need of shielding for small size pipes among the high radiation pipes in the RCB

- Hardship of shielding for HDSP*
 - Complicated configuration & structure of the existing Lead blankets
 - Different sizes between the blanket and pipes
 - Inconvenient pass-way & Eyesore of the external appearances
- Dislodgment from the pipes after shielding
 - The issue of integrity for the blankets

HDSP: high dose rate & small sized pipes

Requirements for the way of shielding & the reduction of the waste materials

- Reusing the radioactive waste
 - Decreasing the waste by optimizing the Lead plates in the vest which should have been disposed of
- Improvement of the shielding method
 - Manufacturing the materials to shield the HDSP with the appropriate shapes and sizes

II. Reusing the Lead vests

Status in Hanbit PP2

II. Reusing the Lead vests

2

Current conditions

Type Quantity	Necklace Type	Shoulder type	General type
Total	25sheet	41sheet	95sheet
Disposal	21sheet	15sheet	N/A
Lead plates	45ea/sheet	45ea/sheet	N/A

Separated Lead plates

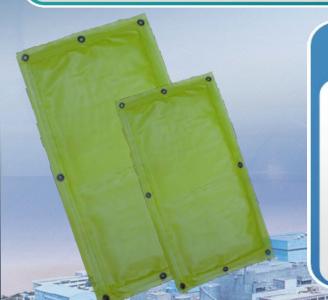
Item	Collective(ea)	Useable(ea)	Remark
Necklace Type	945	853	-
Shoulder type	675	597	-
Total	1,620	1,450	Reusing

Specification of the Lead plate(Size: 31×2.5×0.2 cm/Weight 0.12kg)

III. Manufacture of the Lead shielding

Design of shielding

Structure of the shielding


- Consideration for sagging from the pipe and length of
- the line Steady structure available for long term period

Material of the shielding

- Non-flammable & easily decontaminated material
- Outer cover : tarpaulin
- Inner part: Polyester 65%

Manufacture of the shielding

- Grid patterned plate with the double stitch
- Within 2mm between inner sheath & plate
- Sealed Lead plates with the outer cover
- Edge of the Lead plate to be spherical

III. Manufacture of the Lead shielding

III. Manufacture of the Lead shielding

3 Results of Manufacturing

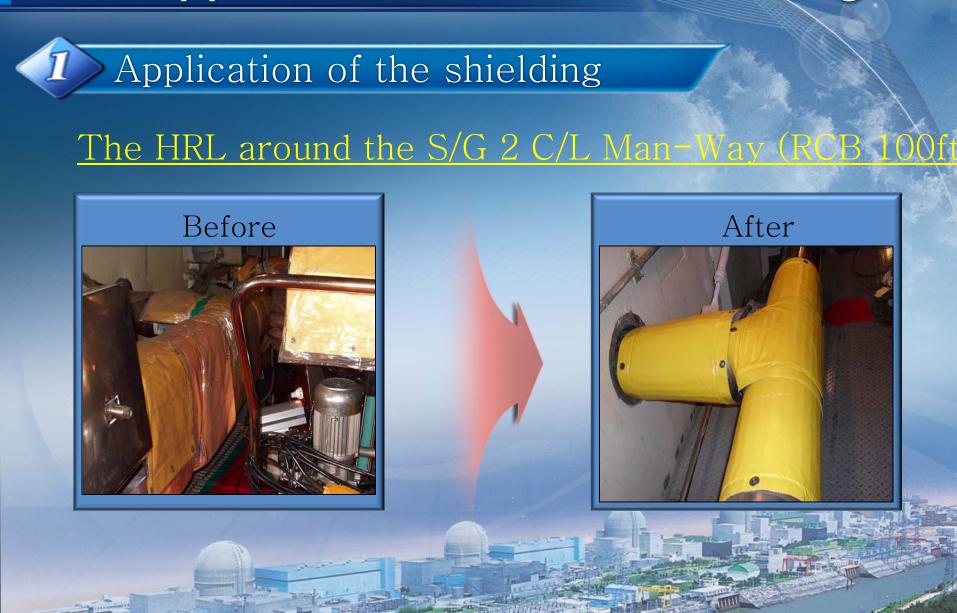
Existing Lead shielding

Improved Lead shielding

Application of the shielding

S/G C/L → Small size pipe of RDT line (RCB 86ft)

1


Application of the shielding

The HRL around the Cavity FAN (RCB 86ft)

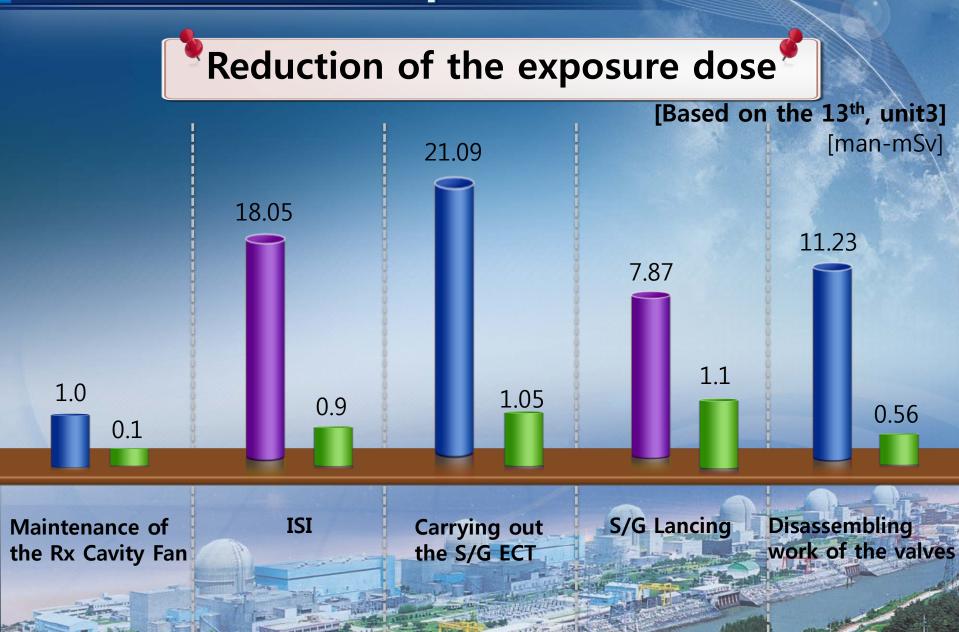
* HRL: High Radiation Line

Application of the shielding

RC LOOP $2A \rightarrow$ The HRL around the PZR (RCB)

The omitted pipe with existing Lead blanket due to weight issues

The HRL of the Let-Down 441-201Q (SAB100ft)



2 Improvement

- Taking less time than expected to shield these lines
- Solving the environmental conditions of the narrow work spaces
- Increasing its shielding function by attaching securely

Chialdina ana	Dose rate(mSv/h)		reduction
Shielding area	Before	After	efficiency(%)
1. RCB 86' S/G C/L → RDT Line	0.62	0.51	17.7 ↓
2. HRL around the Cavity FAN	0.81	0.65	19.6↓
3. HRL around the S/G 2 C/L	0.58	0.56	3.5 ↓
4. RC LOOP 2A → HRL by the PZR	0.72	0.18	75↓
5. HRL of the Let-Down 441-201Q	3.10	2.80	9.7↓

V. Effects & plans

V. Effects & plans

Conclusion

Reduction of the radioactive waste materials and the costs to process the drums

- Achievement of decreasing the waste by reusing the vests
- Reduced Capacity: about 1 drum

Acquiring the technique for the radiation safety management

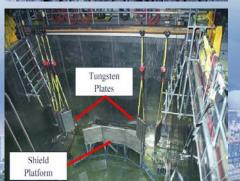
- Improvements for the efficiency of the shield and analysis of the HRL
- Boosting the external appearances by perfecting the shields

Raising awareness of the insufficient shielding areas with the existing Lead blanks

- Increasing the shield efficiency in comparison with existing Lead blankets solved the weight issues
- Enhancement of the way to shield the large size pipes
- -Need to try to manufacture the tailored shielding for the

complicated structures

V. Effects & plans



Plans

Developing the shield superiority to enhance the efficiency of the existing shielding materials

- Tungsten Shielding
 - High intensity and flexibility
 - Non-poisonous & superior shielding function than Iron or Lead
 - But more expensive(3times price of Lead)
- Sustainable improvements for the shielding methods for the large sized pipes

