

Cook Critical RP Survey Program

A New, Systematic Approach To Radiation Protection Program Information Capture

Bob Hite - RP, Chemistry, Environmental Director American Electric Power - Cook Nuclear Plant

2013 ISOE International ALARA Symposium Tokyo, Japan, 27-29, 20<mark>13</mark>

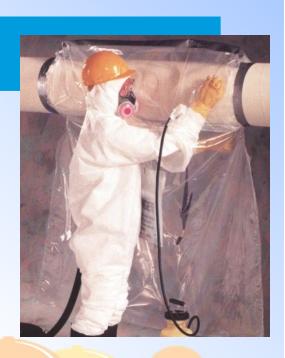
Cook Units 1 & 2 Background

- Westinghouse PWR Ice Condensers
- Unit 1 Commenced Commercial Operation in 1975
- Unit 2 Commenced Commercial Operation in 1978
- Total Construction Costs were low: \$1.3 Billion USD
- Plant Life Cycle Management Project Approved by Indiana and Michigan Rate Commissions for \$1.1 Billion USD for 20 additional years of operation (Unit 1 to 2034 & Unit 2 to 2037)

RP, Chem & Environmental Director Background

- Arrived at Cook in fall 2011
- Previously RPM at Duane Arnold (BWR), Diablo Canyon (PWR), Prairie Island (PWR) & Bruce Power (CANDU).
- Expertise in Alpha Hazard Awareness,
 RP software data analysis,
 radiochemistry & cellular health effects

Cook Units Radiological Performance


- Achieved lowest US & French PWR 3-year rolling average based on WANO data in 2012
- Cook was fourth quartile US PWR in 2002
- Unit 1 achieved 514 days of continuous operation prior to spring 2013 refueling outage
- Unit 2 has logged 455 days of continuous operation at of August 1, 2013

Concept

- The critical survey concept
 - Some important surveys during U2C20 were not obtained, OR
 - Were not of adequate quality
 AND
 - There was not an opportunity to re-do the survey
 - AND
 - Was important in program evaluation or decision making

Concept

- The concept is to specifically:
 - Identify certain surveys as "critical"
 - Schedule the performance of the surveys with logic
 - Ensure surveys are completed the same shift
 - Enhance the level and timeliness of supervisory oversight over their conduct and timely review and approval

 Concept was introduced into radiation safety procedures ahead of U1C25 outage

Critical Survey

Defined by RP
Supervision as "a survey critical to plant radiological performance, industry or performance trending, or instrumental in the decision making process".

Examples of Critical Surveys

- Initial steam generator bowl surveys
- EPRI standard radiation point surveys
- Containment entries at power surveys
- Before and after crud burst surveys
- Before and after refueling cavity decon
- Surveys for large dose estimates or risk
- Initial alpha characterisation surveys
- Any other survey selected by RP supervision

"Critical Survey" Requirements

- Designated prior to performance to allow time for planning and discussion.
- Includes a pre job brief from RP supervisor to technician performing survey:
 - To include documentation (template), survey instruments and radiations to be measured.
- Survey to be completed by technician who has done survey before or briefed by technician or supervisor who has done it.
- Should be reviewed by supervision before work starts.
- Should be documented by technician by end of shift.

Implementation in U1C25

- 15 critical surveys defined for the outage
- Critical survey packages, including templates prepared
 - Tried to identify best past survey examples, or create new diagrams or maps when required
- Spreadsheet to identify and track status of critical survey completion created
 - Discussed at daily turnover meeting
 - Identified supervisor responsible for each critical survey on upcoming shift
- Master binder maintained of all critical survey results as they were performed

Critical surveys in U1C25

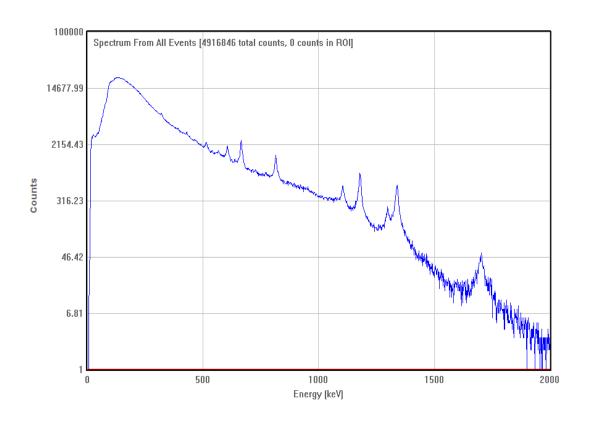
- Initial Entry Surveys
- Post crud burst, post shielding surveys
- EPRI survey points
- Steam generator bowl survey
- Regen heat exchanger work
- Reactor cavity pre and post drain down (especially after EDM work)
- RHR IM-350 valve (alpha)
- RCDT waste drain valve (alpha)
- Pre transport surveys for LRSS bolt

Critical Surveys in U1C25

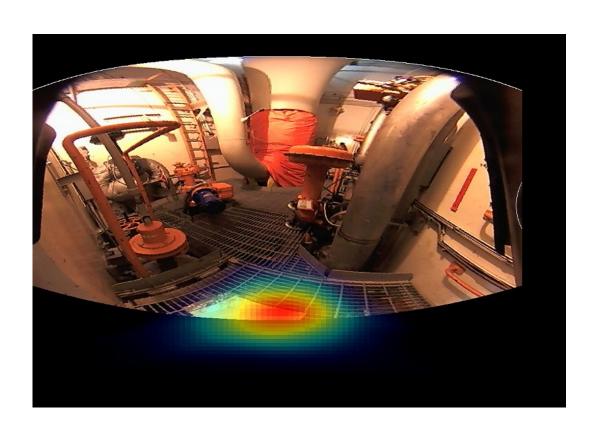
- Used for alpha characterization surveys
 - Components that had not previously been characterized
 - Systems that had not been characterized
 - Items received from other facilities

- QRV-162
 - Three smears taken
 - Beta gamma levels 80 kdpm, 300 kdpm
 - Counted on AC3 probe, background
 - Ratio 5000:1
 - Could have used 3030/proteon for first smear
 - (could have been more accurate if counted lower beta gamma wipes)
 - Beta gamma level 25 kdpm
 - Counted on 3030, background
 - No air sample or lapel information on survey

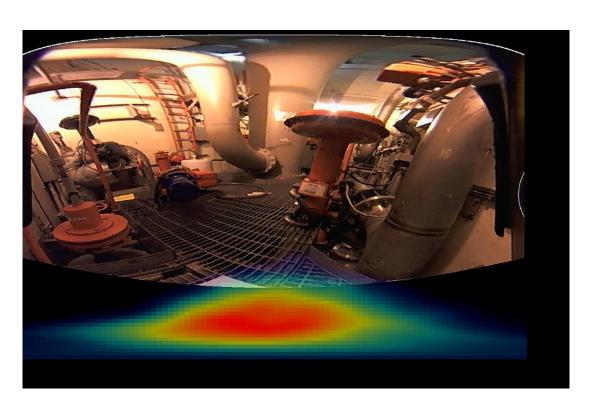
- 1-WD-261 (at RCDT)
 - One smear from valve body
 - 29 dpm alpha, beta gamma to alpha ratio 990
 - One smear following mild abrasion
 - 71 dpm alpha, beta gamma to alpha ratio 544
 - Note that levels increased when surface was abraded indicating historical contamination
 - Air sample and lapel very low


- RHR valve, 1-IMO-350
 - Five smears taken and monitored using AC3 probe - Contamination ranged from 100-220 cpm (526-800 dpm alpha)
 - Smears of smears taken from two of these
 - Activity 344 dpm and 237 dpm alpha on these
 - Equates to 3323 and 761 dpm on first smear
 - Beta gamma ratios from 361 to 1009
 - Air sample and lapel showed minimal activity

- CZT was used throughout the plant and identified a large amount of Cs-137 in beta gamma contamination
 - This confirms that alpha emitters very likely to be present in these areas/in the plant
- Further justifies the need for the enhanced alpha monitoring program


U1 E RHR Hx Mid-Outage

- Measurement info: 04-02-2013 13:38:03 (22.2 min) U1 E RHR Hx
- Isotopes: Co-58, Fe-59, Co-60, Sb-124, Cs-137
- Trace amounts of: Cr-51, Nb-95, Zr-95


U1 E RHR Hx Mid-Outage

- Measurement info: 04-02-2013 13:38:03 (22.2 min) U1 E RHR Hx
- Selected Isotopes in Post-Processed Imaging: Cs-137

U1 E RHR Hx Post-Outage

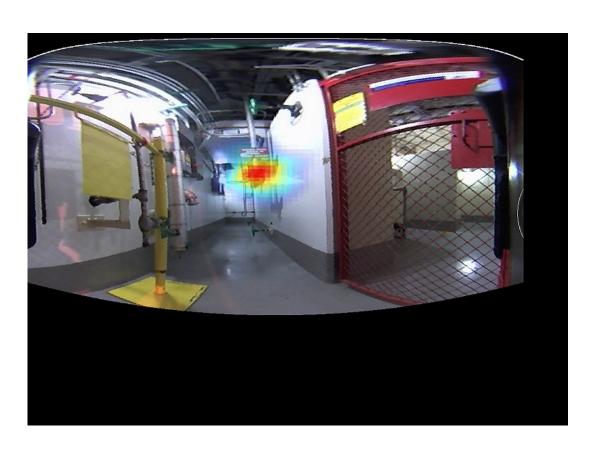
- Measurement info: 05-16-2013 12:36:55 (16.5 min) U1 E RHR Hx GA
- Selected Isotopes in Post-Processed Imaging: Cs-137

U1 E RHR Time-lapse

Cs-137

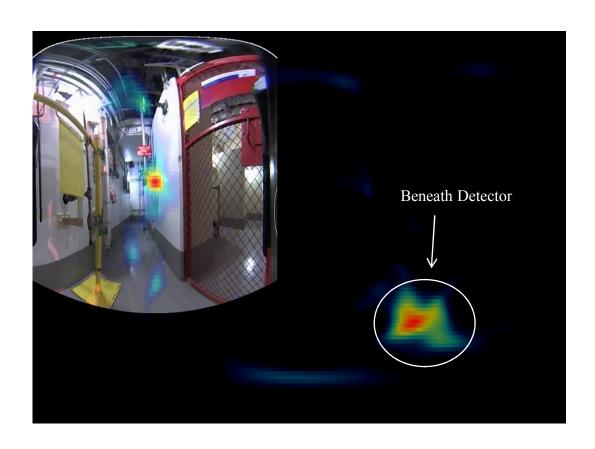
Pre-Outage Mid- Post-

Detector



587' AUX BUILDING RADIATION AREA (RA)

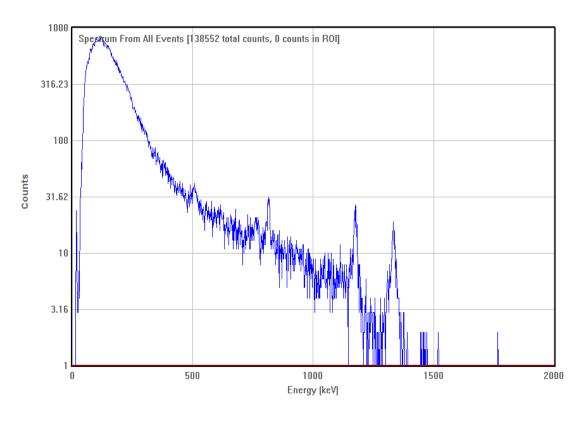
Image of the hallway next to north waste evaporator filter/pump room. It is the only RA on the 587' level that is not located in a room. Current hot spot is 60 mR/hr contact and 5 mR/hr at 30 cm. Cobalt-60 is concentrated on valve 12-WD-322 in the waste disposal system. Cesium-137 is embedded in the floor, walls and piping.


587' Aux RA

- Measurement info: 06-03-2013 13:40:32 (11.6 min) N. Waste Evaporator Feed/Filter Pump Room
- Selected Isotopes in Post-Processed Imaging: Co-60

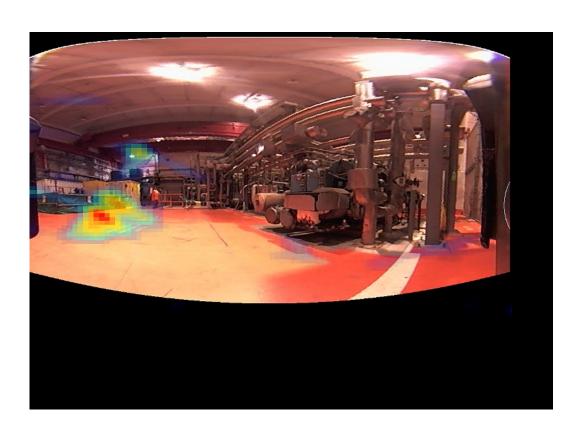
587' Aux RA

- Measurement info: 06-03-2013 13:40:32 (11.6 min) N. Waste Evaporator Feed/Filter Pump Room
- Selected Isotopes in Post-Processed Imaging: Cs-137



650' AUXILIARY BUILDING

120,000 ccpm personnel contamination occurred in a "clean areas" on the 650' aux building. This measurement located areas for follow-up smears by RP technicians. Two 2,000 ccpm particles and one 140,000 ccpm particle were found and removed.


650' Aux Building

- Measurement info: 05-20-2013 15:24:09 (30.5 min) 650' Elevation O/S Vital Area
- Isotopes: Co-58, Co-60
- Trace Amounts of: Nb-95

650' Aux Building

- Measurement info: 05-20-2013 15:24:09 (30.5 min) 650' Elevation O/S Vital Area
- Selected Isotopes in Post-Processed Imaging: Co-58

650' Aux Building

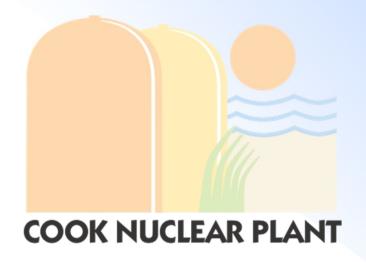
- Measurement info: 05-20-2013 15:24:09 (30.5 min) 650' Elevation O/S Vital Area
- Selected Isotopes in Post-Processed Imaging: Co-60

Critical Surveys Results

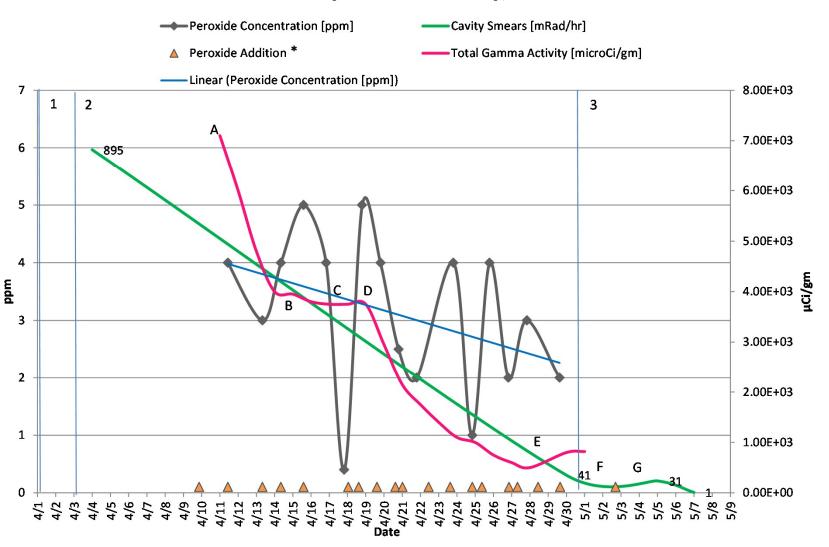
- Increased overall quality of survey data
- Increased oversight over the performance of important surveys
 - They were <u>done</u> by <u>right person</u> at <u>right time</u> in the <u>right way</u>
- QA over dose rate surveys used to verify appropriateness of dose estimates
 - Used good survey data to lower dose estimate in one case
- Improved confidence in alpha monitoring data collected
- Demonstrated effectiveness of new process for cavity water clean up
- Feedback from supervisors and technicians very positive

Critical Survey Results

- When choice made NOT to do a critical survey, then noticed drop in standards:
 - Reactor pit
 - Routine survey was relied upon
 - Two dose rate alarms found, and discovered routine survey was not comprehensive enough
 - Implementation of the critical survey concept in this area may have prevented this event
 - Steam generator nozzle dam box opening
 - Could not prepare before box was opened
 - Alpha surveys were conducted but not recorded



- Recording precisely how alpha monitoring was performed improves accuracy of the alpha data and provides additional information:
 - Smear of a smear in the RHR-IM-350 valve identified 344 dpm alpha, which was recorded on the survey as 344 dpm, but actually was 3323 dpm alpha if ratio back to first smear
 - Abrasive smear of RCDT waste valve showed alpha activity increased by 2.5 times and ratio decreased by a factor of two from surface smear
- Both issues were picked up from review of the "critical survey" performed for job coverage


Lessons Learned

- Reactor cavity clean using peroxide addition and recirculation of cavity water through the spent fuel pool demineralizer using PRC-01 resin was effective
- See Graph

Total Gamma Activity - Reactor Cavity/Refuel Canal 1

Conclusions

- Critical survey concept is a useful tool to increase the oversight and therefore quality of survey data obtained
- Focus on survey quality for critical surveys will impact quality of all surveys as errors are identified and survey quality is improved
- Critical survey concept will continue to be used and refined further at Cook