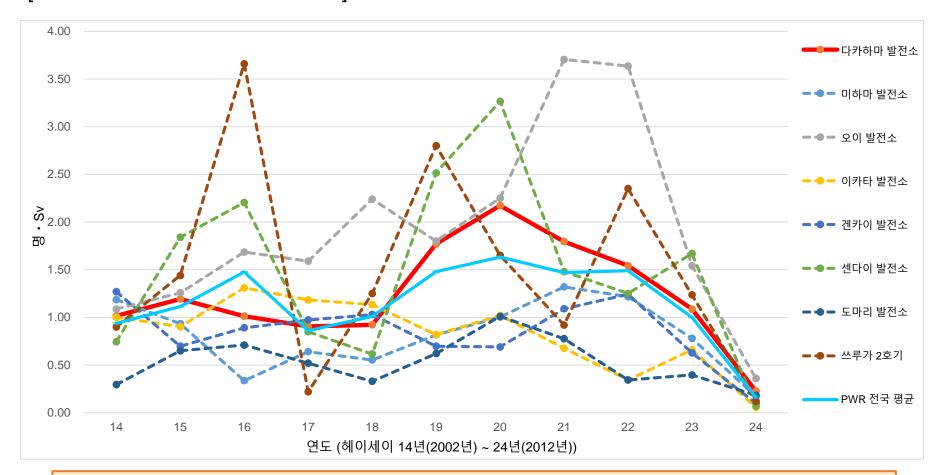

피폭 저감 WG의 활동상황에 대하여


2017년 3월 다카하마 발전소 방사선 관리과

[AFI 개요]

발전소의 집적 선량을 줄이는 데 있어서 현장 작업원의 방사선량을 줄이는 대책은 그다지 효과적이지 않다. 그 결과, 발전소의 집적 선량치는 세계의 PWR(가압수형 원자로) 중에서 하위 1/4에 들어 있으며, 예상치 못한 피폭을 일으킬 위험을 증가시키고 있다. 방사선 위험도가 높은 작업에 대한 방사선 관리의 관여가 충분하지 못했기 때문에 이와 같은 문제가 일어나고 있다.

[PWR 발전소에서의 피폭 총 선량]

▶전국 PWR 발전소 중에서 다카하마 발전소의 원자로별 피폭 총 선량은 높은 수준에 있기 때문에, 재가동 후 평상시 정기점검 때의 피폭을 더욱더 줄이기 위해, 주요 공사의 동형 플랜트와 비교하는 등 다방면으로 검토

금년도의 실시사항

- 1. 당사 3개 부지, 타사 PWR 플랜트 정기점검 주요 공사의 피폭 저감에 관한 정보수집 [조사 대상 공사]
 - 1 원자로 용기 정기점검 공사 (다카하마 3호기, 센다이 1호기)
 - 2. 캐비티 오염제거 공사 (다카하마 1 · 2 · 3 · 4호기, 미하마 3호기, 오이 3 · 4호기)
 - 3 S/G 수실 격리 공사 (다카하마 3호기, 센다이 1호기)
 - 4 S/GECT 부대 공사 (인서트 플레이트 손질작업 : 당사 3개 부지)
- 2. 관리구역 체인징 구역의 설치방법 변경 (색상 식별화 등)에 의한 신체 오염의 저감
- 3. 3호기 제22회 정기점검 피폭 저감 활동
- 4. 피폭 저감대책 도구의 도입
- <u>5. 가설 차폐의 상설화 등 검토</u>
- 6. 방사선 카메라의 유효성 검토
- 7. 피폭 저감에 관한 제안 보상제도의 도입에 대하여

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (1-[1])

[목적] 정기점검 주요 작업인 「원자로 용기 정기점검 공사」의 피폭 저감대책을 실시하기 위해, PWR 각사의 상황 조사 [원자로 용기 정기점검 공사의 피폭 선량 등 비교]

항목		홋카이.	도전력	시코	쿠전력	일본원전		간사이전력		규슈전력	비고	
			도마리	1호기	이카타 2호기	이카타 3호기	쓰루가 2호기	미하마 3호기	오이 3호기	다카하마 3호기	센다이 1호기	미끄
	총 선량 (명 • mSv)								•			
공사 전체	작업시간 (명 • h) 피폭률 (mSv/h)											
			1									
	총 선량 (명 · mSv)											
	캐비티외 (OF 등) 작업시간 (명 · h)	작업시간 (명 • h)										
	(01 6)	피폭률 (mSv/h)										
DV 7II HL		총 선량 (명 • mSv)										
RV 개방 까지	캐비티 내	작업시간 (명 • h)										
1 71.1		피폭률 (mSv/h)										
		총 선량 (명 • mSv)										
	합계	작업시간 (명 • h)										
		피폭률 (mSv/h)										
주요	위 덮개 내면 (mSv/h)]									
방사선원	방사선원 │ 캐비티 안의 위 덮개 주변 (mSv/h)											

※추출 데이터는 최근 10번의 정기점검 실적을 평균한 것으로 함

- 피폭률은 타사와 동등하나, 피폭 선량이 높은 것은 작업시간이 많은 것이 요인으로 생각된다.
- 그래서, 실제 작업인원을 조사해보니 큰 차이를 확인할 수 있었다.

	[다카하마 발전소의 실제 작업인원이 규슈전력 센다이 발전소에 비해 많은 요인]								
항목	다카하마 발전소	센다이 발전소(규슈전력)							
플랜트 환경의 차이	우구이연에는 13개 들댄트가 일접해 있어 작업자의 교대가 많기 때문에, 실제 작업인원이 규슈전력 센다이 바저스에 비해 많은 거으로 초저되다	사가현에 4개 플랜트, 가고시마현에 2개 플랜트로 플랜트의 수가 적고, 작업자의 교대도 적어 어느 정도 고정화되어 있기 때문에, 당사에 비해 실제 작업인원이 안정적인 것으로 추측된다.							
	R/V 정기점검 공사에서 진공 · 탈기 벤팅작업을 실시 (본체 공사 작업자와는 다른 체제로 실시)	진공・탈기 벤팅작업은 다른 공사로 실시							

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (1-[2])

[원자로 용기 정기점검 공사의 공사체제 등 비교]

	÷IП	홋카이도전력	시코쿠	¹ 전력	일본원전		간사이전력		규슈전력
	항목	도마리 1호기	이카타 2호기	이카타 3호기	쓰루가 2호기	미하마 3호기	오이 3호기	다카하마 3호기	센다이 1호기
고나헤레드	공사체제								
공사체제 등	발주방법								
	RV 개방까지의 공사 기간								
	RV 시트면 손질 시 높이								
	캐비티 내 작업환경								
공사내용 등	TC 주변 가설 차폐								
	캐비티 상태								

※가장 최근의 정기점검 내용 기재

※1:레이저 점검 등 공사내용에 따라 다름 ※2:위 덮개 임시 놓는 장소 주변에도 차폐 칸막이 실시(차폐 기간: 캐비티 물 담기~R/V 위 덮개 매달기)

특히 캐비티 외 작업의 작업시간이 많아, 공사체제를 조사한 결과, 교대근무 체제에 차이가 있는 것이 판명 ()

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (1-[3])

<u>[평가 요약]</u>

- ▶ <u>원자로 용기 정기점검 공사의 내용</u> 면에서는, 다카하마 3호기와 센다이 1호기 모두 <u>거의 같다</u>. (다른 점으로는 센다이에서는 RV 개방 시 씰플레이트를 사용한다는점)
- ▶ 실제 작업인원의 추가 조사 결과, 작업자의 실제 인원수가 타 전력보다 많은 것이 판명(타 전력 정도). 주요 이유로서 지역 독자성(인접 플랜트의 차이, 관련 회사가 많은 등)이 있고, 개선 가능성에 대해서는 관리유지 라인도 아울러확인이 필요하다.
- ➤ 공사체제에 대해서는 으로 함으로써 피폭 선량을 줄일 수 있다. (단, R/V 정기점검는 중요한 공정이므로 상담이 필요함)

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (2-[1])

[목적]

정기점검 주요 작업인 「캐비티 오염제거 공사」의 피폭 저감대책을 실시하기 위해, 동형 플랜트인 미하마의 상황을 조사했다.

[캐비티 오염제거 공사의 피폭 선량 등 비교]

	항목	다카하마 1호기	다카하마 2호기	미하마 3호기	비교 평가 (T1/M3)	비교 평가 (T2/M3)
공사전체	총 선량(명·mSv)				4.3배	4.6배
	총 선량(명·mSv)				3.4배	3.4배
캐비티 본 염제거	작업시간(명·h)				2.8배	2.8배
	피폭률(mSv/h)				1.2배	1.2배
	총 선량(명·mSv)				16.0배	17.6배
캐널 본 오염제거	작업시간(명·h)				4.8배	4.8배
	피폭률(mSv/h)				3.3배	3.7배

※추출 데이터는 최근 4번의 정기점검 실적을 평균한 것

미하마에 비해, 캐비티 • 캐널 오염제거 모두 총 선량 및 작업시간이 많다.

[※]캐비티 본 오염제거, 캐널 본 오염제거는 캐비티 오염제거 공사의 작업단계 중에서 작업내용이 다카하마와 미하마에서 거의 같은 것으로 추출

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (2-[2])

[캐비티 오염제거 공사의 작업방법 등 비교 검토]

미하마 • 오이의 작업방법 등에 대해 조사한 결과, 이하의 내용으로 다카하마에서 작업을 추진하기로 했다.

- ▶ 회전형 걸레로 닦아내기 실시 → 방사선원에서의 거리를 확보
- ▶ 다기능 오염제거 천으로 1차 오염제거 실시 → 작업량의 감소
- \triangleright 오염제거 판정기준의 변경 $(0.4 \rightarrow 2.0 \text{Bq/cm}^2)$ \rightarrow 작업량의 감소
- ➤ LCI, UCI 스탠드의 오염제거 범위 삭감 → 작업량의 감소

[회전형 걸레]

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (2-[5])

[기대되는 감소 효과]

오염제거 기준 및 오염제거 방법의 재검토에 의해, 캐비티 오염제거 공사의 피폭량 약 <u>5 mSv 의</u> <u>삭감</u>이 예상된다.

(상부 • 하부 캐비티 오염제거 작업에 반영하는 것이 유효)

[현안]

- ▶ <u>C/V 캐널의 오염제거 기준을</u> 4.0 Bq/cm² → 전회와 동일한 선량당량률로 <u>재검토</u>하는 것에 따른하부 캐비티의 공간 선량당량률이 상승함으로써, <u>연료취급 기계장치 점검작업의 피폭 선량이 증가</u>한다. 또한 잔류오염 수준이 상승함으로써 방사선 방・보호장비가 중장비화 되어 <u>작업성의</u> 악화가 예상된다.
- 원자로 보수과로부터 실제로 감소 효과 및 작업 안전 면에 문제가 없다는 확증을 갖고 본격적인 운용에 반영하고 싶다는 요청이 있음.

[향후의 진행방법]

3호기 22회 정기점검 및 4호기 재가동 시 연료장착 후의 캐비티 오염제거 작업에서 피폭 저감대책을 시범 운용해 보고, 효과 확인 및 과제를 추출 · 개선하여 본격적인 운용을 위해 검토를 진행한다.

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (3-[1])

[목적]

정기점검 주요 작업인 「S/G 수실 격리공사」의 피폭 저감대책을 실시하기 위해, T-3 동형 플랜트인 센다이 1호기의 상황을 조사했다.

증기발생기 수실 격리공사 수실 내 선량당량률 • 공사 피폭 실적 비교표

1. S/G 수실 내 선량당량률

	T-3 [#18~#21 평균]	S-1 [#15~#18 평균]	T-3/S-1
			26주일 전 26주일후 <u>24 정기점검</u> 3차 정치원한 Ave
hot			1.2 9.9 1.1 0.8 1.0
Cold			0.9 0.5 0.7 0.8 0.7

2. 증기발생기 수실 격리공사[부착]

	T-3 [#18~#21 평균]			S-1 [#15~#18 평균]			T-3/S-1							
	명 • mSv	명 • h	출입 횟수		종사인원	명 • mSv	명 · h	출입 횟수	종사인원	명 • mSv	명 • h	출입 횟수		종사인원
수실			1							0.9	0.8	0.5		
루프실 안										0.8	0.6			11
루프실 밖										1.2	1.1			1.1
합계				V				ı V		0.9	1.1			

《비교 결과》

- [1] 수실 내 선량당량률은 거의 같음
- [2] 증기발생기 수실 격리 덮개 설치에 관련된 수실 내 실적은 선량 · 작업량 모두 S-1을 밑돌고 있다. 수실 내 출입 횟수도 밑돌고 있다.

총 선량 • 작업시간 내용 모두 큰 차이는 없음. 따라서, S/G 관련 작업인 ECT 작업에 대해 피폭 저감대책을 검토하기로 했다.

1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (4-[2])

[목적]

정기점검 주요 작업인 「S/GECT 부대 공사 중, 인서트 플레이트 손질작업」의 피폭 저감대책을 실시하기 위해 각 부지의 상황을 조사

인서트 플레이트 손질 시의 각 부지 작업내용 등 비교

항목	다카하마 1・2호기	다카하마 3・4호기	미하마 발전소	오이 발전소	차이점
차폐 방법					
손질작업 위치					
손질작업 장소 선정					
손질작업 인원수					
손질방법					
선량 측정방법					

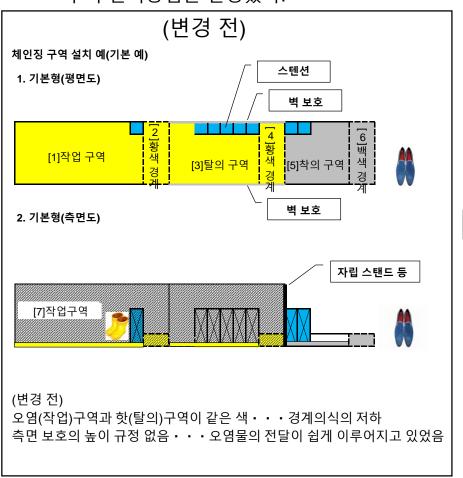
(다카하마 3・4호기 손질작업)

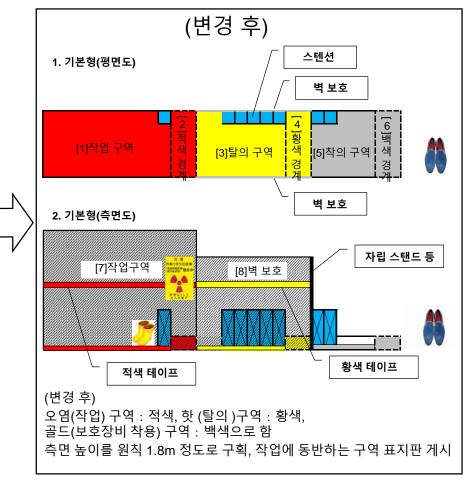
1. 정기점검 주요 공사의 피폭 저감대책에 관한 정보수집 (4-[1])

<u>인서트 플레이트 손질 피폭 실적집계(S/G 1기당)</u>

항목		선량	작업시간	피폭률	환경 선량당량률	IP 표면 선량당량률	종사인원	비고
		명・mSv/기	명 • h/기	mSv/h/기	mSv/h	mSv/h	명/기	
	1호기 27회							
	2호기 27회							-
	3호기 20회							
다카하마	3호기 21회							
	3호기 22회							-
	4호기 19회							
	4호기 20회							
	1호기 24회							TI게+II 이니
0.01	2호기 24회							집계치는 인서 트 플레이트 손
오이	3호기 16회							질 이외의 작업 을 포함
	4호기 15회							글 포함
	1호기 24회							
	1호기 25회							
	2호기 26회							
미하마	2호기 27회							-
	3호기 24회							
	3호기 25회							

집계치를 IP 손질 횟수 대상 S/G기 수로 나누어 1기당 피폭으로 함


[요약]


미하마 2 · 3호기의 피폭 선량이 낮으므로, 미하마의 작업방법을 채택함으로써 피폭 저감의 가능성이 있음 (→ 계속해서 조사 · 검토 실시 예정)

2. 관리구역 체인징 구역 설치방법 변경에 의한 신체오염의 저감-[1]

[목적]

오염관리의 충실을 꾀함과 동시에, JANSI 동료평가 시 지적사항의 반영을 위해, 다음과 같이 체인징구역 설치방법을 변경했다.

오염관리의 충실

- 오염되어 있는 작업구역을 특별한 적색으로 함으로써 작업자의 오염 주의를 환기한다.
- 측면 보호를 높게 함으로써 우발적인 접근을 차단하고, 오염확대 등을 방지한다.

3. 3호기 제22회 정기점검 피폭 저감 활동-[1]

[목적]

3호기 제22회 정기점검의 피폭 저감 활동으로서 이하의 내용에 대해 실시했다.

a. 정기점검 공정 조정(피폭 저감상의 공정 조정)

S/G 2차측 블로 다운 계통의 밸브 분해 작업 계획 (2차측 용기 내 물의 전 블로 기간이 약 2개월 정도로 장기화)

장기(2개월) 루프실에의 출입 규제(공정 조정)는 공정상 실시할 수 없기 때문에, 각 루프실의 S/G에 대해 광범위하게 가설 차폐를 계획・설치하는 것으로 대응

b. 더 효과적인 피폭 저감대책의 검토 (가설 차폐 설치)

장기 정지로 인해 전체적으로 환경 선량이 저하되어 있었지만, 가압기실의 대형 밸브 부근 등의 환경 선량률은 여전히 높기 때문에, 피폭 저감이 필요하다고 판단한 C/V 내의 각 곳에서 가설 차폐를 설치한 결과, 환경 선량 저감(약 40% 저감)을 실현했다.

c. 피폭 저감 등 상담창구

각 협력업체로부터 피폭 저감대책과 작업 효율 향상에 의한 상담 실시

• C/V 17m 통로의 RCS 샘플 배관이 국소적으로 선량이 높다 (통로 작업자의 체류 가능성 있음)

- C 루프실 17m의 RHR 대형 밸브 선량이 높다
- 작업구역 근방에서 미세먼지 농도 측정을 하고 싶다는상담 BG가 높은 C/V 내에서 미세먼지 측정 환경을 정비 (검출기를 차폐하는 것으로 BG 저감)

3. 3호기 제22회 정기점검 피폭 저감 활동-[2]

d. 루프실 안의 저선량 장소와 고선량 장소의 명확화

고선량 장소에 어쩔 수 없이 체류하는 작업자를 고선량 장소에서 저선량 장소로 유도하기 위해 녹색 튜브 라이트 설치

고선량 장소를 나타내는 적색 튜브 라이트를 가압기 TOP에 설치하여 우발적인 접근을 방지

e. 고선량 장소의 선량 주의 표지판 게시 및 정기적인 갱신

고선량 장소를 정기적으로 조사하고, 선량 주의 표지판을 갱신하여 작업자의 우발적인 접근을 방지

f. 작업 장소에 오염 서베이미터 배치

BG가 높은 C/V 내 통로에서 적시에 오염을 확인할 수 있도록, GM관 차폐체를 배치하고 오염 서베이미터를 설치

g. 공용 구역의 오염 체크

출입 관리실 내의 정기적인 오염 체크와 공용 구역의 다이렉트 조사, 화학 걸레 등을 사용한 오염 체크를 실시 (오염이 검출된 경우는 핵종 분석을 실시하여 핵종을 특정한 후 발생원을 추정)

h. 3호기 22회 정기점검 방사선 영향 평가

「작업 주변 환경평가 정보」에 피폭 저감에 관한 정보를 도입하여 각사에 사전에 배포 관리구역 입구 디스플레이에 게시하여 작업자에게 주의 환기

i. 정기적인 현장 순찰

4. 피폭 저감대책 도구의 도입-[1]

피폭 저감대책 등의 도구로서 다음과 같은 제품을 개발했다.

가설 차폐를 쉽게 설치, 해체할 수 있게 되었으며, 작업 중의 환경 선량이 상승했을 때에도 대응이 가능해졌다.

설치장소 · 측정조건
 3 호 C/V 17m B 루프실 앞 통로
 차폐 가대 없음 BG 2Kcpm
 차폐 가대 있음 BG 50cpm
 (측정기 TCS 319 · 시간 상수 30S)

C/V 내에서 미세먼지 농도를 간이로 측정하는 것이 가능해져, 작업자의 신체적 부담(마스크 착용 해제)을 줄이는 것이 가능해졌다.

(GM관 차폐체 미세먼지 여과지 측정용 도구)

5. 가설 차폐의 상설화 검토ー[1]

[목적]

정기점검 중, C/V 내의 곳곳에 가설 차폐를 설치하고 있으나, 가설 차폐 설치에 따른 피폭을 저감시키기 위해 상설화에 대해 검토를 실시했다.

[전년도 검토내용]

방사선 관리과에서 17곳을 선정하여 원자로 보수과에 검토를 의뢰

차폐의 상설화에 대해서는 모두 「좋다」는 답변을 얻었지만, 현안사항으로서 다음 사항이 지적되었다.

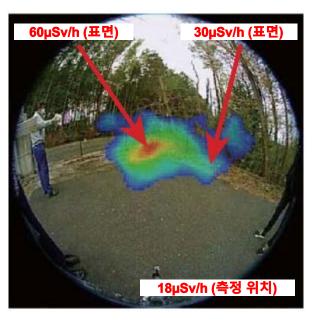
- 운용 중의 상설화가 가능한지 확인이 필요
- 상설화가 가능한 것에 대해서는 내진평가가 필요하며, 내진 보강을 위해 차폐 등이 대형화하면 작업 장소에 방해를 줄 가능성이 있음
- 근접 기기에 대한 영향 평가가 필요
- 섬프 스크린의 막힘에 대한 영향 평가가 필요

[금년도 검토내용]

전년도의 검토 결과를 고려하여, 차폐의 상설화에 대해 실현성의 관점에서 한층 더 검토하여, 설치 시의 과제를 정리했다.

- 상설 차폐 위치에 계측 배관, 전선관, 배관 등이 설치된 곳이 있어 상설화가 곤란
- 타 기기의 점검을 위해, 현재의 가설 차폐가 더 유효한 곳이 있음
- 상설 차폐를 설치하기 위한 가대 설치 장소의 강도가 부족한 곳이 있음

[향후의 과제]


금년도 검토 결과에서 작년도에 검토한 모든 장소에 대한 차폐 상설화 변경 대책으로서, 가설 차폐를 설치하기 위한 가대를 상설화하는 방향으로 개개의 환경에 따른 검토를 실시하기로 한다.

6. 방사선 카메라의 유효성 검토ー[1]

[감마 카메라의 개요]

카메라(검출부)로 방사선의 강도를 측정하여 액정부(PC 등)에 측정결과를 표시하는 장치이며, 측정결과에 대해서는 인쇄 등도 가능하다.

※감마 카메라 본체 및 컴퓨터 부분

[주요 스펙 등]

• 외형 : 13.8cm×15cm×15cm(감마 카메라 본체)

• 중량 : 2kg (감마 카메라 본체)

• 시야 각도 : 140°

• 측정 에너지 범위 : 30 keV - 1.5 MeV

• 비용 : 1,000만엔 이하

6. 방사선 카메라의 유효성 검토-[2]

[전년도 말 상황]

환경 선량에 영향을 주는 장소를 시각적으로 확인할 수 있게 되어, 피폭 저감에 효과적인 도구임이 밝혀졌다. 다만, 비용 대비 효과(1,000만엔/1대)에 문제가 있기 때문에 관리구역 내 작업에서의 활용성 및 비용 저감대책에 대해 계속해서 검토

[금년도 상황]

- 현재의 사양은 기술상에 필요한 최소한의 기능이며, 소형화(캠코더)로 하는 경우 설계비 등에 더 많은 비용이 소요
- 후쿠시마의 실제 기기 시험에서 고선량 장소를 측정하기 위해, 측정범위를 새로 변경한 γ (감마) 카메라의 개발을 제조업체에서 검토 중

[향후의 과제]

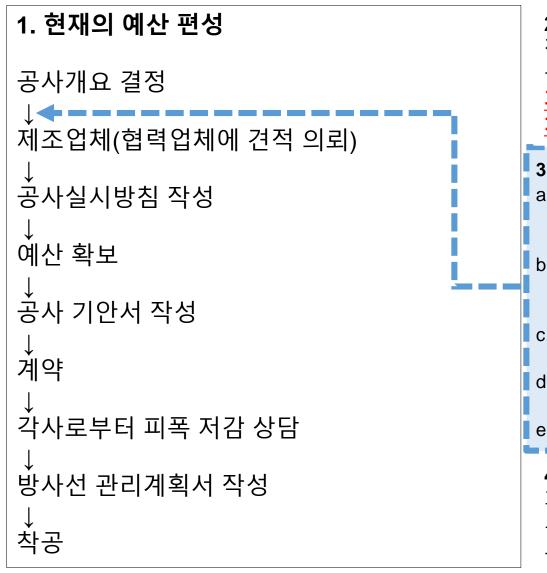
당사의 사양 요구에 따른 제품화에 대해서는 제조업체 측에서 새로운 제안이 있으면 검토를 실시

7. 피폭 저감에 관한 제안 보상제도의 도입에 대하여-[1]

[목적]

공사개요 결정에서 공사 착수까지 사이에, 피폭 저감에 관해 제안 및 제안 채택에 대한 예산 조치가 가능한지, 또 그에 따른 보상에 대해 검토를 실시했다.

[WG 멤버 주요 의견]


- 공사개요, 예산설계 단계에서 방사선 관리 전임자 및 방사선 관리과의 관여가 없다. (정보가 없다)
- 작업 담당과에서의 예산설계 시에 피폭 저감에 관한 제안 유무에 대해 체크하는 체제가 없다.
- 방사선 관리과에 피폭 저감에 관한 협력업체로부터의 상담이 늦다.
- 공사 계획 후에 피폭 저감에 관련된 제안을 제출해도 위험 평가가 나타나기 어렵기 때문에 비용 대비 효과가 낮다는 등의 이유로 당사 내의 심사단계에서 채택되지 않는 경우가 많다.

[고찰]

제안 제도를 마련해도 지금의 체제로는 공사 측에의 방사선 관리 전임자 및 방사선 관리과의 관여가 약하고, 피폭 저감대책을 상담하는 타이밍도 늦기 때문에 제안이 채택되기 어려운 상황에 있다. 따라서, 방사선 관리 전임자 및 방사선 관리과의 관여에 대해 검토 • 논의를 추진했다.

피폭 저감에 관한 제안제도의 도입

공사개요 결정에서 착공까지 사이에 피폭 저감에 관해, 제안 및 예산의 도입이 가능한지 검토했다.

2. 개선안

작업 담당과가 공사개요 결정~ 공사실시방침을 작성하는 사이에, <u>피폭 저감에 관한 제안의 유무에 대해</u> 체크하는 체제가 필요

3. 피폭 저감에 관한 제안제도의 도입

- a. 작업 담당과가 협력업체에 대해 견적단계에서 피폭 저감에 관한 제안의 유무에 대해 체크
- b. 협력업체가 피폭 저감에 관한 제안이 있으면 작업 담당과와 방사선 관리과가 동시에 정보제공
- c. 작업 담당과가 방사선 관리과에 심사를 의뢰
- d. 방사선 관리과가 심사결과를 작업 담당과에 보고
- e. 방사선 관리과 합의

4. 향후의 과제

피폭 저감에 관한 제안이 채택되기 위해서는 작업안전, 공정, 품질 등의 부가가치도 가미하는 것이 필요

7. 피폭 저감에 관한 제안 보상제도 도입에 대하여-[2]

[공사개요 결정부터 공사 준공까지의 과정]

하모		협력업체	
항목	일반공사	특별공사	추가공사
과정	[1] 공사 사양서 수령 [2] 계약 [3] 공사 계획서ㆍ방사선 관리계획서 작성 [4] 방사선 관리계획서 제출 (≧5명ㆍmSv 공사는 방사선 관리과와 히어링) [5] 착공 [6] 준공	[1] 대형 개조공사에 대해서는 수차례 정기점검 전부터 현지 조사 실시 [2] 왼쪽 기재와 동일([1]~[6])	[1] 공사개요 설명 [2] 참고견적 의뢰 [3] 현지조사(작업 책임자만) [3] 공사 사양서 수령 [4] 정식견적 의뢰 [5] 계약 [6] 공사 계획서 • 방사선 관리계획서 작성 [7] 방사선 관리계획서 제출 (≥5명 • mSv 공사는 방사선 관리과와 히어링) [8] 착공 [9] 준공
문제점	• 현지 공사 종료 후, 작업 담당과에 피폭 저감에 관한 제안 등을 설명할 기회가 없다. (일반공사에 관련된 피폭 저감대책을 차후 정기점검에 반영할 방법이 없다.)	딱히 없음	 공사 계획단계에서는 공사 계약이성립되지 않은 상태이므로, 충분한현장조사를실시할수 없다. 충분한현장조사를할수 없기 때문에, 피폭 저감에 관한 제안을할수 없다. 제안을할수 없기 때문에, 작업담당과에서의예산설계시에 피폭저감에 관한예산조치를취할수없다. 방사선관리과에 피폭 저감에 관한협력업체로부터의상담이 늦다.