3. Discharge Results of Radioactive Substance (³H is excluded) in radioactive liquid waste by fiscal year. | FY | 1984 | 1985 | 1986 | 1987 | |--|--|--|--|--| | Power station | -, -, - | | | | | Japan Atomic Power Company Co., Ltd. | 1.2×10^{8} | 1.0×10^{8} | 5.9×10^{7} | 6.7×10^{7} | | Tokai Power Station | (3.2×10^{-3}) | (2.8×10^{-3}) | (1.6×10^{-3}) | (1.8×10 ⁻³) | | L AL D C C LI | 1.3×10 ⁸ | 1.3×10 ⁸ | 1.2×10 ⁸ | | | Japan Atomic Power Company Co., Ltd. | (3.4×10^{-3}) | (3.4×10^{-3}) | (3.3×10^{-3}) | N.D. | | Tokai Daini Power Station | (3.4×10) | (3.4×10) | (3.3×10) | | | Japan Atomic Power Company Co., Ltd. | 2.5×10^{7} | 1.9×10^{7} | 1.2×10^{7} | 1.1×10^{7} | | Tsuruga Power Station | (6.8×10^{-4}) | (5.2×10^{-4}) | (3.3×10^{-4}) | (3.0×10^{-4}) | | I surugu I ower station | (0.0/10) | (3.2/10) | (3.5×10) | (3.0×10) | | Tohoku Electric Power Co., Inc. | | | | | | Onagawa Nuclear Power Station | N.D. | N.D. | N.D. | N.D. | | | | | | | | Tokyo Electric Power Co., Inc. | 9.3×10^{7} | 3.7×10^{7} | 1.0×10^{7} | 6.7×10^6 | | Fukushima Daiichi Nuclear Power Station | (2.5×10^{-3}) | (1.0×10^{-3}) | (2.7×10^{-4}) | (1.8×10^{-4}) | | | | | | | | Tokyo Electric Power Co., Inc. | N.D. | N.D. | N.D. | N.D. | | Fukushima Daini Nuclear Power Station | N.D. | N.D. | N.D. | N.D. | | | | | | | | Tokyo Electric Power Co., Inc. | N.D. | N.D. | N.D. | N.D. | | Kashiwazaki-Kariwa Nuclear Power Station | 11.2. | 11.2. | 11.2. | 11.2. | | | - 0. 10 ⁷ | 5 5 40 ⁷ | 20.107 | 1 1 107 | | Chubu Electric Power Co., Inc. | 7.0×10^{7} | 5.6×10^7 | 3.0×10^{7} | 1.4×10^7 | | Hamaoka Nuclear Power Station | (1.9×10^{-3}) | (1.5×10^{-3}) | (8.0×10 ⁻⁴) | (3.9×10 ⁻⁴) | | HIL TO EL CONTROL | | | | | | Hokuriku Electric Power Co. | | | | | | Shika Nuclear Power Station | | | | | | Chugoku Electric Power Co., Inc. | 8.1×10^6 | 7.0×10^6 | 8.9×10^{6} | 8.1×10^{6} | | Shimane Nuclear Power Station | (2.2×10^{-4}) | (1.9×10 ⁻⁴) | (9.4×10 ⁻⁴) | (2.2×10 ⁻⁴) | | Similarie Pacical Power Station | (2.2/10) | (1.5/10) | ().4/10) | (2.2/10) | | Hokkaido Electric Power Co., Inc. | | | | | | Tomari Power Station | | | | | | | | | | | | Kansai Electric Power Co., Inc. | 3.7×10^{7} | 2.2×10^{7} | $*1.5 \times 10^{7}$ | 1.7×10^{7} | | Mihama Power Station | (1.0×10^{-3}) | (6.0×10^{-4}) | (4.0×10^{-4}) | (4.7×10 ⁻⁴) | | | | | 7 | | | Kansai Electric Power Co., Inc. | 6.3×10^6 | 8.1×10^{6} | 1.3×10^{7} | 2.7×10^{6} | | Takahama Power Station | (1.7×10^{-4}) | (2.2×10^{-4}) | (3.6×10^{-4}) | (7.2×10^{-5}) | | | 1.0.107 | 2.1.107 | 1.6.107 | 4.4.406 | | Kansai Electric Power Co., Inc. | 1.9×10^{7} (5.0×10^{-4}) | 2.1×10^{7} (5.6×10^{-4}) | 1.6×10^{7} (4.4×10^{-4}) | 4.4×10^6 (1.2×10^{-4}) | | Ohi Power Station | (5.0×10) | (5.6×10) | (4.4×10) | (1.2×10) | | Shikoku Eleatria Dawar Co Lac | | | | | | Shikoku Electric Power Co., Inc. Ikata Power Station | N.D. | N.D. | N.D. | N.D. | | ikata i owei Station | | | | | | Kyushu Electric Power Co., Inc. | | | | | | Genkai Nuclear Power Station | N.D. | N.D. | N.D. | N.D. | | | | | | | | Kyushu Electric Power Co., Inc. | ND | ND | ND | ND | | Sendai Nuclear Power Station | N.D. | N.D. | N.D. | N.D. | ^{*}The influence of the Soviet Union Chelnobyl Nuclear Power Station accident is seen. Note: The numerical value before FY 1988 is conversion of the value reported in each curie into the unit of becquerel. (Unit: becquerel. but, the curie in ()) | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | |--|---------------------|---------------------|---------------------|---------------------|---------------------| | 3.1×10^7 (8.5×10^{-4}) | 1.5×10 ⁷ | 3.4×10 ⁷ | 1.6×10 ⁷ | 1.6×10 ⁷ | 6.7×10 ⁶ | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | 1.1×10^{7} (3.0×10^{-4}) | 4.2×10 ⁶ | 5.6×10 ⁶ | 6.6×10 ⁶ | 2.5×10 ⁶ | 1.5×10 ⁵ | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | 7.3×10 ⁵ | N.D. | N.D. | N.D. | N.D. | | 1.2×10^7 (3.3×10^{-4}) | 1.1×10 ⁷ | 9.1×10 ⁶ | 5.2×10 ⁶ | 2.4×10^6 | 6.0×10 ⁵ | | | | | | N.D. | N.D. | | 5.9×10 ⁶ (1.6×10 ⁻⁴) | 3.4×10^6 | 6.2×10 ⁵ | 1.5×10 ⁶ | 2.4×10^6 | 2.2×10 ⁶ | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | 2.1×10^{7} (5.6×10^{-4}) | 6.5×10 ⁶ | 1.6×10 ⁷ | 5.1×10 ⁵ | 3.0×10 ⁶ | 3.4×10 ⁵ | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | 2.1×10^5 (5.7×10^{-6}) | N.D. | 7.4×10 ⁵ | N.D. | 7.8×10^4 | 1.4×10 ⁵ | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |